2022
Lasso 迴歸模型
Lasso模型的全稱為最小絕對值收斂和選擇算式,主要運用在迴歸分析中的解釋變數篩選並通過「懲罰項目」的參數設定調整複雜度,因此,透過Lasso模型便可以降低「過度擬合」的問題,並且提升解釋變數的有效性。
Lasso模型的懲罰項用於衡量「誤差項」與「解釋變數量」之間孰輕孰重,也就是在挑選模型參數的過程中便不會只參考誤差項最小化,還會綜合考量解釋變數的數量不要太多,讓模型有適當的複雜度。
懲罰項參數設定則會影響到模型會考慮哪一個面相較多,若參數小,則該模型較注重「減少誤差」;反之,參數大,則模型較注重「減少解釋變數的量」,所以這就需要執行人員選定一個區間的數值不斷進行測試。