2023
GRU 與 LSTM
追逐利益、趨避風險是投資人的目標,預測股價動是達成上述目標的方法之一。過去人們使用ARIMA、GARCH等時間序列,試圖刻畫出未來股價的軌跡。到了今日,隨著深度學習的蓬勃發展,越來越多時間序列相關的模型的出現,似乎能應用於未來股價的預測中。本文即是利用GRU與LSTM兩序列相關模型進行股價預測,使用前5日的開盤、最高、最低、收盤價預測隔日收盤價。
過去【資料科學】LSTM已對LSTM有相當程度的介紹,於此不在多做贅述。本文多加入了同樣是RNN家族的GRU模型,檢驗GRU與LSTM在股價預測上的表現差異。GRU改動了LSTM中記憶單元的遺忘、輸入與輸出門,將其縮編為更新門與重置門,前者類似於LSTM中的遺忘與輸入門,負責決定每次迭代需保留與丟棄的信息,後者則是決定需丟棄過去累積的信息。從三門減少至雙門的情況下,GRU相較於LSTM能達成較快的運算速度,且其表現理論上不亞於LSTM。